Analysis of emotion in speech using perceived and automatically extracted prosodic features

نویسندگان

  • Suk-Myung Lee
  • Jeung-Yoon Choi
چکیده

This study investigates the relationship between emotional states and prosody. A prosody detection algorithm was applied to emotional speech to extract accents and intonational boundaries automatically and these were compared with hand-labeled prosodic units. The measurements used in the detection algorithm are derived from duration, pitch, harmonic structure, spectral tilt, and amplitude. The utterances are part of a Korean emotional database subset in which 10 sentences were spoken by 6 speakers over 4 emotions (neutral, joy, sadness and anger). By comparing the probabilities of occurrence and temporal patterns of events that were detected prosodic events between neutral speech and emotional speech, our experiments find different distributions for each emotion. Overall, joy and anger tended to have more events classified as accents compared to other emotions. Also, sadness had more events corresponding to boundaries. In addition, joy had more events classified as accents at the beginning of utterances, while anger had more accents at the ends of utterances. These results indicate that prosodic characteristics can be useful for classification of emotion and in synthesizing emotional speech.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Quantification of Segmentation and F0 Errors and Their Effect on Emotion Recognition

Prosodic features modelling pitch, energy, and duration play a major role in speech emotion recognition. Our word level features, especially duration and pitch features, rely on correct word segmentation and F0 extraction. For the FAU Aibo Emotion Corpus, the automatic segmentation of a forced alignment of the spoken word sequence and the automatically extracted F0 values have been manually cor...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

The effect of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on the acoustic and prosodic features in patients with Parkinson’s disease: A study protocol for the first trial on Iranian patients

Background: The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on the voice features in Parkinson’s disease (PD) is controversial. No study has evaluated the voice features of PD underwent STN-DBS by the acoustic, perceptual, and patient-based assessments comprehensively. Furthermore, there is no study to investigate prosodic features before and after DBS in PD. The curren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009